Applied Polymer

Study of Polyarylene Ether Nitrile Terminated with Phthalonitrile/ Hybrid Fe₃O₄ Nanospheres Composites by Orthogonal Experiments

Lifen Tong, Mengdie Liu, Ya Long, Xiaobo Liu

Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, High-Temperature Resistant Polymers and Composites, Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China

Correspondence to: X. Liu (E-mail: liuxb@uestc.edu.cn)

ABSTRACT: A novel series of composites of polyarylene ether nitrile terminated with phthalonitrile (PEN-*t*-Ph) filled with hybrid Fe3O4 nanospheres (h-Fe₃O₄) was prepared via *in situ* composition. Based on the cross-linking interactions between the phthalonitrile at the end of PEN-*t*-Ph molecular chains and the phthalonitrile on the surface of h-Fe₃O₄ particles to form phthalocyanine ring, it was shown that the PEN-*t*-Ph/h-Fe₃O₄ system had superior interfacial compatibility and the h-Fe₃O₄ particles were locked in the matrix resin. These results had been confirmed by scanning electron microscope analysis. By orthogonal experiments and statistic analysis, the optimal conditions of cure temperature, type of h-Fe₃O₄ and content of h-Fe₃O₄ had been determined. Meanwhile, the results of range analysis and variance analysis indicated that the cure temperature had great effects on the thermal properties. Thermal studies revealed that the glass transition temperature of PEN-*t*-Ph/h-Fe₃O₄ cured at 320°C was 214.7°C, increased by about 40°C compared to the PEN-*t*-Ph/h-Fe₃O₄ without heat treatment, and the temperature corresponding to the weight loss of 5 wt % was increased by about 20°C. Mechanical measurements indicated that PEN-*t*-Ph/h-Fe₃O₄ without heat treatment. Most importantly, the presence of h-Fe₃O₄ particles endows PEN-*t*-Ph/h-Fe₃O₄ system with good magnetic property. Thus, PEN-*t*-Ph/h-Fe₃O₄ cured at 320°C may have potential applications in field of magnetic materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. **2014**, *131*, 40418.

KEYWORDS: composites; crosslinking; differential scanning calorimetry (DSC); surfaces and interfaces

Received 27 September 2013; accepted 5 January 2014 **DOI: 10.1002/app.40418**

INTRODUCTION

As a well-known type of engineering thermoplastic resin, polyarylene ether nitriles (PEN) have attracted considerable attention due to their outstanding properties including excellent thermal and thermo-oxidative stability, good mechanical properties, superior chemical inertia, and radiation resistance.^{1–3} Moreover, as a crosslinkable PEN, polyarylene ether nitrile terminated with phthalonitrile (PEN-*t*-Ph) has a wide range of applications owing to its more excellent thermal stability, better mechanical properties.⁴ It is due to the fact that the phthalonitrile at the end of the PENs molecular chain can react between each other to form the thermally stable phthalocyanine rings.

In recent decades, polymer/inorganic composites have attracted considerable attention for their unique properties. Many types of filler materials have been used to improve the properties of the matrix resin, such as mineral fillers or glass beads to increase heat distortion temperature, carbon nanotubes to augment the thermal transport properties and fibrous fillers to improve tensile strength.^{5–7} However, these excellent properties of the resulted materials depend on several factors, such as the chemical bonding of the filler and matrix at the interface and the interfacial compatibility between the dispersed phase and matrix.⁸ For instance, the mechanical properties of the polymers, such as impact strength, tensile strength and impermeability to solvents and oxygen can be significantly affected by both the size and the shape of the dispersed phase in an incompatible polymer blend.^{9,10} Therefore, many researchers had done great effort to solve the problem of interfacial compatibility which limit the employment of fillers to polymers. As has been reported, the interfacial compatibility between the filler and matrix can be improved via the surface functionalization of filler materials.^{11,12}

 Fe_3O_4 nanoparticles have received a lot of attention because of their promising magnetic properties and potential applications in color imaging, electromagnetic shielding, magnetic recording

© 2014 Wiley Periodicals, Inc.

WWW.MATERIALSVIEWS.COM

WILEYONLINELIBRARY.COM/APP

Table I. Testing Factors and Levels

Factors		Cure temperatures (°C)	Types of h-Fe ₃ O ₄	Contents of h-Fe ₃ O ₄ (wt %)
Symbols		Т	В	С
Levels	1	300	а	2
	2	320	b	4
	З	340	С	6

media and soft magnetic materials.¹³ In the current study, Fe₃O₄ hybrid nanospheres (h-Fe₃O₄) were prepared from the PEN-*t*-Ph, FeCl₃·6H₂O, ethyleneglycol, and polyethyleneglycol by one-step solvothermal method to solve the interfacial compatibility with the PEN-*t*-Ph matrix.¹⁴ And a series of composites of PEN-*t*-Ph filled with h-Fe₃O₄ particles were synthetized via *in situ* composites.

Orthogonal experiments can qualitatively analyze the correlations among the relevant variables at different levels through designing orthogonal table and statistic analysis.¹⁵ Regressive analysis can be used to get the optimized parameters, to achieve the predetermined features, and to uncover the statistic principle based on the hidden or equivocal factors.¹⁶ The orthogonal table L₉(3)⁴ was used in this work, and the glass transition temperature (T_g), the temperature corresponding to the weight loss of 5 wt % ($T_{5\%}$), tensile strength, tensile modulus and breaking elongation were set as the investigation targets. Three influential factors including cure temperature, type of PEN-*t*-Ph/Fe₃O₄ hybrid nanospheres (h-Fe₃O₄) and content of h-Fe₃O₄ were

Table II. Testing Program and the Corresponding Results

EXPERIMENTAL

Materials

The PEN-*t*-Ph was synthesized in our laboratory. Ferric chloride hexahydrate (FeCl₃· $6H_2O$, 99%), ethyleneglycol (EG, 99%), and polyethyleneglycol 2000 (PEG, 99%) were purchased from Kelong Regent Co., Chengdu, China. Anhydrous ethanol (CH₃CH₂OH, 99%), *N*-methylpyrrolidone (NMP, purity 99%) were purchased from Tianjin Bodi Chemical Holding Co., Tianjin, China. Based on the different mass ratio between the PEN-*t*-Ph and FeCl₃· $6H_2O$, the different types of h-Fe₃O₄ had been prepared, and the mass ratios between the PEN-*t*-Ph and FeCl₃· $6H_2O$ of type **a**, **b**, and **c** were 1/19, 1/9, and 1/3, respectively.

Orthogonal Experimental Design

To investigate the effect of the cure temperature, type of h- Fe_3O_4 and content of h- Fe_3O_4 on the properties of PEN-*t*-Ph/h- Fe_3O_4 crosslinking films, the orthogonal experiments have been designed, and the testing factors and levels were listed in Table I. The orthogonal experiment table $L_9(3)^4$ was arranged, and the testing program was listed in Table II in detail. Finally, optimal *in situ* composite conditions and significant factors were

Test numbers	Cure temperatures	Types of h-Fe $_3O_4$	Contents of $h-Fe_3O_4$	Error column	Test index
1	1 (T ₁)	1 (B ₁)	1 (C ₁)	1	Y ₁
2	1 (T ₁)	2 (B ₂)	2 (C ₂)	2	Y2
3	1 (T ₁)	3 (B ₃)	3 (C ₃)	3	Уз
4	2 (T ₂)	1 (B ₁)	2 (C ₂)	3	y 4
5	2 (T ₂)	2 (B ₂)	3 (C ₃)	1	У5
6	2 (T ₂)	3 (B ₃)	1 (C ₁)	2	У6
7	3 (T ₃)	1 (B ₁)	3 (C ₃)	2	y ₇
8	3 (T ₃)	2 (B ₂)	1 (C ₁)	3	У8
9	3 (T ₃)	3 (B ₃)	2 (C ₂)	1	У ₉
lj	$l_1 = y_1 + y_2 + y_3$	$I_2 = y_1 + y_4 + y_7$	$I_3 = y_1 + y_6 + y_8$		
IIj	$II_1 = y_4 + y_5 + y_6$	$II_2 = y_2 + y_5 + y_8$	$II_3 = y_2 + y_4 + y_9$		
III _j	$III_1 = y_7 + y_8 + y_9$	$III_2 = y_3 + y_6 + y_9$	$III_3 = y_3 + y_5 + y_7$		
k _j	$k_1 = 3$	k ₂ = 3	k ₃ = 3		
I_j/k_j	I_1/k_1	I_2/k_2	I ₃ /k ₃		
llj/kj	II_1/k_1	II_2/k_2	ll ₃ /k ₃		
III _j /k _j	III_1/k_1	III_2/k_2	III ₃ /k ₃		
Range (R _j)	max{}-min{}	max{}-min{}	max{}-min{}		
Sum of deviation square (S_j)	$S_j = k_j \left(\frac{l_j}{k_i} - \overline{y}\right)^2 + k_j \left(\frac{l_j}{k_i} - \overline{y}\right)^2$	\overline{y}) ² + $k_j \left(\frac{III_j}{k_i} - \overline{y}\right)^2$			
Variance (V_j)	$V_j = S_j/f_j$; $V_e = S_e/f_e$; Degree of freedom $f_1 = f_2 = f_3 = f_e = 2$				
The ratio of the variance (F_j)	$F_j = V_j / V_e$				

Applied Polymer

determined from the orthogonal table established by using analysis of range and variance.

Preparation of PEN-t-Ph/h-Fe₃O₄ Crosslinking Films

The PEN-t-Ph/h-Fe₃O₄ crosslinking films were prepared by solution casting method combined with ultrasonic dispersion technology. First, the purified PEN-t-Ph was added into a threenecked flask and dissolved in the medium of NMP at 200°C for 30 min with stirring to prepare the PEN-t-Ph solution. Meanwhile, the h-Fe₃O₄ particles were dispersed in NMP accompanying with violent ultrasonic to form a highly dispersed suspension. Secondly, the h-Fe₃O₄ particles suspension was added into PENt-Ph solution drop by drop, and the mixture was treated with ultrasonic wave and stirred for 90 min to make sure that the h-Fe₃O₄ particles were dispersed uniformly in the polymer matrix. Thirdly, the mixture was cast on a clean glass plate, and dried in an oven to evaporate off the solvent with the procedure of 80°C, 100°C, 120°C, 140°C, 160°C, 180°C, and 200°C for 1 h, respectively. Lastly, the films were cured at higher temperature (300°C, 320°C, 340°C) for 4h to obtain the PEN-t-Ph/h-Fe₃O₄ crosslinking films.

Characterization

The cross-sectional morphologies of the PEN-t-Ph/h-Fe₃O₄ composites were characterized with scanning electron microscope (JEOL JSM-5900LV) operating at 20 kV. The thermal curing behavior of the PEN-t-Ph/h-Fe3O4 system was performed on TA Instrument DSC-Q100 with a heating rate of 10°C/min from room temperature to 350°C and a nitrogen flow rate of 50 mL/min. Thermal gravimetric analysis of the PEN-t-Ph/h-Fe₃O₄ system was obtained with a TA Instruments TGA-Q50 at a heating rate of 20°C/min from room temperature to 700°C under nitrogen atmosphere. The mechanical properties of the PEN-t-Ph/h-Fe₃O₄ films were investigated by SANS CMT6104 Series Desktop Electromechanical Universal Testing Machine. Before measurement, the films were cut into samples of 10 mm \times 100 mm, and then the averaged value of the five samples was gained. The magnetic property of the PEN-t-Ph/h-Fe₃O₄ system was characterized by vibrating sample magnetometer (VSM, Riken Denshi BHV-525).

RESULTS AND DISCUSSIONS

Crosslinking Behavior and Morphological Properties

PEN-*t*-Ph has the crosslinkable properties due to that the terminated nitrile groups can be crosslinked to form thermally stable phthalocyanine rings.¹² The h-Fe₃O₄ particles were prepared from the PEN-*t*-Ph, FeCl₃·6H₂O, ethyleneglycol and polyethyleneglycol. Therefore, the particles had been penetrated by the PEN-*t*-Ph chain, and several ends of the chain had been exposed to the surfaces of the particles. When the *in situ* composite reaction occurs between the PEN-*t*-Ph and h-Fe₃O₄, the h-Fe₃O₄ particles will be locked in the matrix resin. The corresponding schematic diagram of *in situ* composite product is shown in Figure 1(a), and the crosslinked chemical structure is shown in Figure (b).

Figure 2 shows the SEM image of the PEN-t-Ph/h-Fe₃O₄ crosslinking films. It can be seen that the h-Fe₃O₄ particles have great compatibility with PEN-t-Ph. The h-Fe₃O₄ particles exist

Figure 1. (a) Schematic diagram and (b) crosslinked chemical structure of *in situ* composite product.

in two kinds of forms in the resin. Some of $h-Fe_3O_4$ spheres have been crosslinked with the PEN-*t*-Ph and the $h-Fe_3O_4$ spheres are adhered to the fracture surface, which are labeled as a in Figure 2. The other $h-Fe_3O_4$ spheres have completely been locked in the PEN-*t*-Ph resin, which are labeled as b in Figure 2. These results are in accordance with the above theoretical analysis.

To investigate the crosslinking reaction between the PEN-t-Ph polymers and h-Fe₃O₄ particles qualitatively, the pure PEN-t-Ph and PEN-t-Ph/h-Fe3O4 films both without heat treatment are measured by DSC two times, and the DSC curves of these samples are shown in Figure 3. It is found that there is a curing peak at range 290°C-310°C in the curve of pure PEN-t-Ph for the first scanning, however, in the curve of pure PEN-t-Ph for the second scanning, this curing peak disappears. The curves of PEN-t-Ph/Fe₃O₄ exhibit the same phenomenon. Thus, the crosslinking reaction will take place from 290°C to 310°C both in the pure PEN-t-Ph and PEN-t-Ph/h-Fe₃O₄ films. Moreover, the Tg of PEN-t-Ph/h-Fe₃O₄ film for the first scanning is 171.2°C, decreased by 9.3°C than pure PEN-t-Ph for the first scanning with 182.9°C. It is because of that h-Fe₃O₄ is much smaller than PEN-t-Ph, thus the h-Fe₃O₄ particles are easy to move, and provide the space for the chain segment motion. However, the T_g of PEN-t-Ph/h-Fe₃O₄ film for the second

Figure 2. Cross-sectional SEM image of the PEN-*t*-Ph/h-Fe₃O₄ crosslinking films.

Figure 3. DSC curves of the pure PEN-t-Ph and PEN-t-Ph/h-Fe₃O₄ films.

scanning is 194.7°C, which is increased by 2.4°C than that of pure PEN-*t*-Ph for the second scanning with 192.3°C. These results indicate that loading h-Fe₃O₄ particles did not weaken the T_g of the PEN-*t*-Ph matrix after heat treatment, and h-Fe₃O₄ particles play a crosslinking agent among the crosslinking reaction of PEN-*t*-Ph.

Analysis of Orthogonal Experiment

Table III lists the thermal properties, including glass transition temperature and temperature corresponding to the weight loss of 5 wt %, and mechanical properties, such as tensile strength, tensile modulus, and breaking elongation of the PEN-*t*-Ph/h-Fe₃O₄ crosslinking films. According to the measured data and the computational formulas of range and variance analysis, the analysis results are listed in Tables IV and V.

Table IV shows the analysis results of thermal properties of PEN-*t*-Ph/h-Fe₃O₄ crosslinking films. Through the analysis of range, it can be seen that the main influencing factor of T_g is the cure temperature, followed by the type of h-Fe₃O₄, and the order of influencing factor of $T_{5\%}$ is the same as that of T_g . Thus, the main factor affecting its thermal performance is the cure temperature which should be chosen as 340° C. To the test index of T_g , it can be found that the $F_{0.01} > F_1 > F_{0.05}$

from the analysis of variance, so the condition of cure temperature has great influence on the T_g of PEN-*t*-Ph/h-Fe₃O₄ crosslinking films. And the values of F of both the type of h-Fe₃O₄ and content of h-Fe₃O₄ are below the $F_{0.1}$, so it is clear that they have no significant effect on the T_g of PEN-*t*-Ph/h-Fe₃O₄ crosslinking films. To the test index of $T_{5\%}$, all the conditions of cure temperature, type of h-Fe₃O₄ and content of h-Fe₃O₄ have no significant effect on index. In conclusion, the key factor affecting the thermal performance of PEN-*t*-Ph/ h-Fe₃O₄ crosslinking films is the cure temperature. It is due to the fact that the cross-linking interactions between the cyano groups would form phthalocyanine ring which have stable structure at high temperature, so that the thermal performance of the polymer can be improved through the cure temperature increased.

Table V lists the analysis results of mechanical properties of PEN-t-Ph/h-Fe₃O₄ crosslinking films. From analysis of range, it is found that the order of the effect factors on the tensile strength is: type of h-Fe₃O₄ > cure temperature > content of h-Fe₃O₄. The order of the effect factors on the tensile modulus is: content of $h-Fe_3O_4 > type$ of $h-Fe_3O_4 > cure$ temperature, and the influence of the type of h-Fe₃O₄ and content of h-Fe₃O₄ is greater than cure temperature significantly. The order of the effect factors on the breaking elongation is: type of h-Fe₃O₄ > content of h-Fe₃O₄ > cure temperature. In conclusion, the main effect factor on the tensile strength and breaking elongation is the type of h-Fe₃O₄, and the main effect factor on tensile modulus is the content of h-Fe₃O₄. Thus, the type of h-Fe₃O₄ should be selected b, and the content of h-Fe₃O₄ should be selected 6.0 wt %. By comprehensive consideration of thermal, mechanical properties and process cost, 320°C would be the most optimal cure temperature.

From the analysis of variance, all the values of F to mechanical properties are below the value of $F_{0.1}$, so the factors of cure temperature, types of h-Fe₃O₄, and contents of h-Fe₃O₄ have no significant effect on mechanical properties. Therefore, the condition of *in situ* composite is mainly decided by the results of the range analysis.

Thermal and Mechanical Properties

To investigate the influence of the h-Fe₃O₄ and cure temperature on the thermal and mechanical properties of the matrix

Table III. Thermal and Mechanical Properties of PEN-t-Ph/h-Fe₃O₄ Crosslinking Films

Test numbers	<i>T_g</i> (°C)	T _{5%} (°C)	Tensile strength (MPa)	Tensile modulus (MPa)	Breaking elongation (MPa)
1	209.2	525.17	89.48	2332.64	7.75
2	209.0	522.51	87.81	2297.12	6.94
3	205.4	518.73	87.03	2461.41	6.06
4	225.5	522.97	86.71	2470.40	5.72
5	214.7	518.77	93.33	2414.05	8.02
6	214.5	525.95	88.08	2218.40	6.87
7	236.0	529.45	63.50	2435.06	3.43
8	228.0	522.69	91.24	2336.91	7.15
9	228.3	534.99	82.03	2167.49	5.99

Results analysis	Cure temperatures	Types of h-Fe ₃ O ₄	Contents of h-Fe $_3O_4$	Error column	
Glass transition temperature					
lj/kj	207.87	223.57	217.23		
IIj/kj	218.23	217.23	220.93		
III _j /k _j	230.77	216.07	218.70		
R _j	22.90	7.50	3.70		
V_j	394.48	48.86	10.41	5.47	
F_j	72.06	8.93	1.90		
Temperatures Corresponding to the Weight Loss of 5 wt %					
lj/kj	522.14	525.86	524.60		
II _j /k _j	522.56	521.32	526.82		
III _j /k _j	529.04	526.56	522.32		
R _j	7.10	5.24	4.50		
Vj	44.94	24.24	15.23	21.96	
Fj	2.05	1.10	0.69		

Table IV. Analysis Results of Thermal Properties of PEN-t-Ph/h-Fe₃O₄ Crosslinking Films

resin, the pure PEN-*t*-Ph film cured at 320°C and PEN-*t*-Ph/h-Fe₃O₄ film without any heat treatment were prepared.

Thermally induced phase transition behavior of the PEN-*t*-Ph/ h-Fe₃O₄ system was investigated by DSC under a nitrogen atmosphere. Figure 4 shows the DSC curves of the pure PEN-*t*-Ph film cured at 320°C labeled as (1), PEN-*t*-Ph/h-Fe₃O₄ film without heat treatment labeled as (2) and sample 5 of PEN-*t*- Ph/h-Fe₃O₄ film labeled as (3). It can be seen that the T_g of samples (1), (2), and (3) are 212.7°C, 171.2°C, and 214.7°C, respectively. The T_g of samples (1) and (3) which cured at 320°C for 4 h are almost the same, and increased by about 40°C compared to the T_g of sample (2). These results indicate that and loading h-Fe₃O₄ particles have little effect on the T_g , and the T_g increased greatly through the method of heat

Table V. Analysis Results of Mechanical Properties of PEN-t-Ph/h-Fe₃O₄ Crosslinking Films

Results analysis	Cure temperatures	Types of h-Fe ₃ O ₄	Contents of h-Fe ₃ O ₄	Error column			
Tensile strength							
lj/kj	88.11	79.90	89.60				
IIj/kj	89.37	90.79	85.52				
IIIj/kj	78.92	85.71	81.29				
R _j	10.45	10.89	8.31				
V_j	97.57	89.19	51.84	72.37			
Fj	1.35	1.23	0.72				
Tensile modulus							
lj/kj	2363.72	2412.70	2295.98				
ll _j /k _j	2367.62	2349.36	2311.67				
IIIj/kj	2313.15	2282.43	2436.84				
Rj	54.47	130.27	140.86				
V_j	2769.37	12,730.27	17,877.10	12,679.81			
F_j	0.22	1.00	1.41				
Breaking elongation							
l _j /k _j	6.92	5.63	7.26				
llj/kj	6.87	7.37	6.22				
III _j /k _j	5.52	6.31	5.84				
R _j	1.40	1.74	1.42				
V_j	1.88	2.30	1.62	1.74			
Fj	1.08	1.32	0.93				

Figure 4. DSC curves of the samples: (1) Pure PEN-*t*-Ph film cured at 320° C; (2) PEN-*t*-Ph/h-Fe₃O₄ film without heat treatment; (3) PEN-*t*-Ph/h-Fe₃O₄ film cured at 320° C.

treatment. Therefore, the applicable temperature will be improved effectively.

From the thermogravimetric curves of the samples (1), (2), and (3) shown in Figure 5, it is found that the curve of sample (1) is similar to that of sample (3) before 600° C. However, the temperature corresponding to the weight loss of 5 wt % of sample (2) without heat treatment is below than that of samples (1) and (3) obviously. It can be seen that the $T_{5\%}$ of samples (1) and (3) increased by about 20°C than that of samples (2), and $T_{10\%}$ increased by about 15°C. The temperature corresponding to the maximum rate of loss mass (T_m) of the samples are much the same. These results demonstrate that the thermostability of the films was improved greatly after heat treatment, so that the using temperature of the polymers is improved.

The h-Fe₃O₄ particles have a little influence on the thermal properties of the polymer from the above analysis. However,

Figure 5. Thermogravimetric curves of the samples: (1) Pure PEN-*t*-Ph film cured at 320°C; (2) PEN-*t*-Ph/h-Fe₃O₄ film without heat treatment; (3) PEN-*t*-Ph/h-Fe₃O₄ film cured at 320°C.

Figure 6. Mechanical properties of the samples: (1) Pure PEN-*t*-Ph film cured at 320° C; (2) PEN-*t*-Ph/h-Fe₃O₄ film without heat treatment; (3) PEN-*t*-Ph/h-Fe₃O₄ film cured at 320° C.

they have great effect on the mechanical properties of the composites. Figure 6 shows the mechanical properties of samples (1), (2), and (3). The tensile strength of samples (1), (2), and (3) are 83.42 MPa, 80.07 MPa, 93.33 MPa, and the tensile modulus are 2058.29 MPa, 2016.25 MPa, and 2414.05 MPa, respectively. These results indicate that loading h-Fe₃O₄ particles make the tensile strength increase by 9.91 MPa, and make the tensile modulus increase by about 355.76 MPa. Heat treatment makes the tensile strength increase by 13.26 MPa, and makes the tensile modulus increase by about 397.90 MPa. Therefore, both loading h-Fe₃O₄ particles and heat treatment can improve the mechanical properties of polymers. This reason can be explained from two aspects. On the one hand, through heat treatment, the cyano groups at the end of PEN-t-Ph or on the surface of h-Fe₃O₄ particles can react with each other to form phthalocyanine ring, causing the mechanical properties to improve. On the other hand, loading h-Fe₃O₄ particles reduce the relative motion of the polymer molecular chain, and prevent the propagation of the crack when the crack extension encountered h-Fe₃O₄ particles.

Magnetic Properties

The magnetic property of PEN-t-Ph/h-Fe₃O₄ system will be endowed by the presence of h-Fe₃O₄ particles. Figure 7 shows the magnetic hysteresis loop of the sample 5 of PEN-t-Ph/h- Fe_3O_4 film. The saturation magnetization (M_s) is the achieved maximum value that the magnetization intensity of ferromagnetic material and the ferromagnetic materials increases with increasing magnetic field, and this value of the PEN-t-Ph/h- Fe_3O_4 film is 5.18 emu g⁻¹. The remnant magnetization (M_r) is the residual magnetization after the applied field is reduced to zero, and this value of PEN-t-Ph/h-Fe₃O₄ film is 1.15 emu g⁻¹. The coercivity (H_{o} Oe) is the external applied magnetic field necessary to return the material to a zero magnetization condition, and this value of PEN-t-Ph/h-Fe₃O₄ film is 168.13 Oe at 300 K. These results indicate that the PEN-t-Ph/h-Fe₃O₄ system possesses superior magnetic property, and the potential applications of PEN-t-Ph/h-Fe3O4 film in the magnetic field are fantastic.

Figure 7. Magnetic hysteresis loop of typical PEN-t-Ph/h-Fe₃O₄ film.

CONCLUSIONS

A novel series of PEN-t-Ph/h-Fe₃O₄ in situ composites were successfully prepared, and this system possessed excellent interfacial compatibility between fillers and matrix, which had been confirmed by the analysis of scanning electron microscope image. It was because of the cross-linking interactions between the PEN-t-Ph molecular chains and the h-Fe₃O₄ particles that phthalocyanine ring will be formed at high temperature. Through orthogonal experimental design and statistic analysis, the optimal conditions of cure temperature, type of h-Fe₃O₄ and content of h-Fe3O4 had been determined. Meanwhile, the results of range analysis and variance analysis indicated that the cure temperature had great effect on the thermal properties. Thermal studies revealed that the glass transition temperature of PEN-t-Ph/h-Fe₃O₄ cured at 320°C was 214.7°C, increased by about 40°C compared to the PEN-t-Ph/h-Fe₃O₄ without heat treatment, and the temperature corresponding to the weight loss of 5 wt % increased by about 20°C. Mechanical measurement indicated that both the method of loading h-Fe₃O₄ particles and heat treatment could improve the mechanical properties of polymers, and PEN-t-Ph/h-Fe₃O₄ cured at 320°C possessed excellent mechanical properties with tensile strength of 93.33 MPa and tensile modulus of 2414.05 MPa. Besides, the presence of h-Fe₃O₄ particles endows PEN-t-Ph/h-Fe₃O₄ system with good magnetic property. Therefore, the system of PEN-*t*-Ph/h-Fe₃O₄ cured at 320° C will be a candidate to be applied in high temperature conditions.

ACKNOWLEDGMENTS

The authors wish to thank for financial support of this work from the National Natural Science Foundation (No. 51173021, No. 51373028) and "863" National Major Program of High Technology (2012AA03A212).

REFERENCES

- 1. Verborgt, J.; Marvel, C. S. J. Polym. Sci. Part A: Polym. Chem. 1973, 11, 261.
- 2. Saxena, A.; Rao, V. L.; Ninan, K. N. Eur. Polym. J. 2003, 39, 57.
- 3. Li, C.; Gu, Y.; Liu, X. B. Mater. Lett. 2006, 60, 137.
- 4. Tong, L., Pu, Z.; Huang, X.; Chen, Z.; Yang, X.; Liu, X. J. Appl. Polym. Sci. 2013, 130, 1363.
- 5. Stricker, F.; Bruch, M.; Mülhaupt, R. Polymer 1997, 38, 5347.
- Biercuk, M. J.; Llaguno, M. C.; Radosavljevic, M.; Hyun, J. K.; Johnson, A. T.; Fischer, J. E. *Appl. Phys. Lett.* **2002**, *80*, 2767.
- 7. Wang, H.; Feng, X.; Shi, Y.; Lu, X. Chin. Particuol. 2007, 5, 414.
- 8. Zhong, J.; Tang, H.; Chen, Y.; Liu, X. J. Mater. Sci. Mater. Electron. 2010, 21, 1244.
- 9. Leclair, A.; Favis, B. D.; Polymer 1996, 37, 4723.
- 10. Subramanian, P. M. Polym. Eng. Sci. 1985, 26, 483.
- Pu, Z.; Tang, H.; Huang, X.; Yang, J.; Zhan, Y.; Zhao, R.; Liu, X. Colloids Surf. A 2012, 415, 125.
- Huang, X.; Pu, Z.; Tong, L.; Wang, Z.; Liu, X. J. Mater. Sci. Mater. Electron. 2012, 23, 2089.
- 13. Liu, Z.; Wang, J.; Xie, D.; Chen, G. Small 2006, 4, 462.
- Wei, J.; Zhan, Y.; Yang, X.; Meng, F.; Ma, Z.; Zhao, R.; Zhong, J.; Zhang, J.; Liu, X. J. Magn. Magn. Mater. 2011, 323, 3210.
- 15. Cui, W.; Li, X.; Zhou, S.; Wei, J. J. Appl. Polym. Sci. 2007, 103, 3105.
- 16. Fan, D. Y.; Chen, Y. H. Probability Theory and Mathematical Statistics; Zhejiang University Press: China, **1996**, p 215.

